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Previous decision analysis literature has established the presence of judgmental errors in the quantile

judgments provided by an expert. However a systematic approach to using quantile judgments to

deduce the mean and standard deviation of the underlying probability distribution while accounting

for judgmental errors has not yet been established. This paper develops an optimization based

approach to accomplish this task. The approach estimates both the mean and standard deviation as

weighted linear combinations of quantile judgments, where the weights are explicit functions of the

expert’s judgmental errors. The approach is analytically tractable, and provides flexibility to elicit

any set of quantiles from an expert. The structural properties of the solution explain a number of

numerical observations made in the extant decision analysis literature. The approach also establishes

that using an expert’s quantile judgments to deduce the distribution parameters is equivalent to

collecting data with a specific sample size. The approach allows combining the expert’s judgments

with data in a Bayesian fashion and with other experts’ estimates in a manner that is consistent

with the existing theory of combining point forecasts from noisy sources. The paper also contributes

to practice by discussing a large-scale implementation of the theory at Dow AgroSciences to make

an annual $800 million decision, and providing insights into the selection of quantiles to elicit from

an expert. Results show that the judgments of the expert at Dow are equivalent to 5–6 years of data

collection, with substantial monetary savings.
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1. Introduction

1.1. Problem Context and Industry Motivation

A determination of the uncertainties in supply, demand, prices, or activity durations is critical

for managing businesses. In stable business environments, the probability distributions for such

uncertain quantities can be estimated using historical data. However historical data may not be

available or may not be directly usable in dynamic business environments — for example, when

there are frequent introductions of new products or when there are changes in competition. In such

environments, one must rely on domain experts to estimate a quantity’s probability distribution,

typically through its mean and variance.

Unfortunately, experts do not perform well at directly providing estimates of the mean and vari-

ance of a distribution. Garthwaite et al. (2005) notes that experts have “serious misconceptions

about variances” and acutely underestimate the variance (p. 686). This poor estimation of variance

by experts is not surprising since variance is a second-order moment, it is difficult to compute men-

tally, and its physical meaning is difficult to grasp. Empirical evidence, such as that provided by

Peterson and Miller (1964) and Zapata-Vázquez et al. (2014), shows that experts also provide poor

estimates, to a lesser degree, of the mean — the first-order moment of a distribution.

In contrast, empirical evidence (see Abbas et al. 2008) suggests that experts provide good quantile

judgments — subjective estimates for quantiles or fractiles1 — of the distribution of an uncertain

quantity. This is because quantiles have a more intuitive probabilistic interpretation, and experts

find it simpler to relate quantiles to their contextual domain. For example, the median demand has

the appealing interpretation of 50–50 odds of the demand being higher or lower than that value.

The quantiles of a probability distribution are related to the distribution’s mean and standard

deviation. Therefore, quantile judgments provided by an expert contain information about the mean

and standard deviation of the probability distribution.

However a systematic approach that uses quantile judgments to deduce the mean and standard

1 The terms “fractile”, “percentile”, and “quantile” are used in the literature for the same quantity. We use “quantile”
in the rest of the paper.
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deviation of the probability distribution while accounting for judgmental errors has not yet been

established. In this paper we develop an approach to accomplish this task. The approach is ana-

lytically tractable, it provides the flexibility of eliciting any set of quantiles from an expert, and

it is amenable to combining an expert’s quantile judgments with data in a Bayesian fashion, and

with other experts’ quantile judgments in a manner that is consistent with the extant theory on

combining point forecasts from multiple experts. It also enables us to establish a new equivalence

between the precision of an expert’s judgments and the size of a sample of experimental data; this

equivalence can be used to rank order experts. Finally, we discuss a large-scale implementation of

the theory and insights for practice gleaned during the implementation.

The industry motivation and application for this research comes from a $800 million annual

business decision at Dow AgroSciences. The firm produces and sells seed corn that farmers buy and

plant to grow corn for human and animal consumption. The firm decides annually how many acres

of land to plant with seed corn. The yield, or amount of seed corn obtained per acre of land, is

random; contextual information suggests that the yield uncertainty is distributed Normally. Under

this uncertainty, planting a very large area may result in a surplus with a large upfront production

cost if the realized yield is high; planting a small area may result in costly shortages if the realized

yield is low. Mathematical models that incorporate the yield distribution can determine the optimal

area of land to plant, but the historical yield data are usually insufficient for obtaining a statistical

distribution of the yield. This is due to the high turnover rate of seeds in this industry — a specific

seed is grown fewer than five–six times before it is discontinued. Due to the lack of historical data

for new hybrid seeds, the yield distributions must be estimated by a yield expert. Dow AgroSciences

recognizes the need for a formal approach to estimating yield distributions that will calibrate the

current and future experts’ estimates, help make production decisions, and track improvement in

judgments for yield distributions over time. Our analytical approach accomplishes these tasks.

1.2. Overview of Approach and Our Contributions

1.2.1. Overview We develop a two-step approach to deduce the mean and standard deviation

from quantile judgments provided by an expert. In Step 1, the errors in his quantile judgments
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are quantified by comparing his judgments against the quantiles of multiple distributions obtained

using historical data (e.g., observed yields for seeds grown repeatedly in the past). In Step 2, the

error information is used as an input to a prescriptive model. The solution to this model assigns

two sets of weights to the quantile judgments. The first set of weights is for estimating the mean as

the weighted linear combination of quantile judgments. The second set of weights is used similarly

to estimate the standard deviation. The weights are specific to the expert’s judgmental errors. The

estimates of mean and standard deviation obtained using these weights are unbiased and have the

smallest possible variance.

Many behavioral reasons have been posited for the presence of judgmental errors in quantile judg-

ments. These reasons include an expert’s bounded understanding of the drivers of the uncertainty,

use of approximate mental models to translate qualitative information into quantitative judgments,

tiredness, and pure random variation (Blattberg and Hoch 1990, Keelin and Powley 2011). These

errors can be decomposed into two components, bias and inconsistency. Bias represents an average

overestimation or underestimation in the value of a quantile. Inconsistency represents the residual

random variations in the estimation process. Our approach accounts for both components.

1.2.2. Contributions to Theory Our focus on obtaining estimates of the mean and standard

deviation from quantile judgments addresses a gap between two streams of decision analysis litera-

ture: (i) judgmental error literature, and (ii) moment estimation literature. The existing judgmental

error literature has focused on developing elicitation guidelines for reducing these errors through

decomposition (e.g., Clemen and Ulu 2008), expert calibration (e.g., Budescu et al. 1997, Koehler

et al. 2002), and combination of assessments from various experts (e.g., Clemen and Winkler 1999,

Baker and Olaleye 2013). However, this literature has not addressed the problem of estimating

moments from subjective quantile judgments.

In contrast, the moment estimation literature has explored the problem of deducing moments

from quantiles numerically with a key assumption: there are no judgmental errors. Pearson and

Tukey (1965), Keefer and Bodily (1983), Keefer and Verdini (1993), and Keefer (1994) follow this

paradigm. They select specific test cases of means and standard deviations of a distribution and
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obtain the 5th, 50th, and 95th quantiles, or other specific symmetric quantiles, for these cases. Then

they consider various sets of candidate weights. For each set of weights, they estimate the means of

all test cases as weighted linear combinations of the quantile values. Finally, they identify the set of

weights that results in the smallest deviations between the true and the estimated means over all

cases. A similar process is followed to identify the set of weights to determine standard deviation or

variance. Lau et al. (1996, 1998), Lau and Lau (1998), and Lau et al. (1999) have a similar focus

and assume that experts can always provide error-free judgments for specific quantiles, typically the

median and two/four/six specific symmetric quantiles.

This paper addresses this gap by developing a practical but analytically rigorous way to estimate

mean and standard deviation from subjective quantile judgments, thereby extending the moment

estimation literature that has ignored judgmental errors, and extending the judgmental error liter-

ature that acknowledges the errors but has not addressed the moment estimation-problem.

The approach developed in this paper also provides the following generalizations to the existing

decision analysis literature.

• Flexible Elicitation: The approach provides weights for any set of quantile judgments that an

expert can provide to estimate the mean and standard deviation, as opposed to the existing decision

analysis literature that focuses on the elicitation of median and two/four/six specific symmetric

quantiles. This is a useful generalization for decision analysis practice since an expert may not be

willing to provide quantile judgments for specific symmetric quantiles. For example, the expert at

Dow was habituated to seeing the 10th, 50th, and 75th quantiles for historical data on his software,

and was willing to estimate only these quantiles.

• Establishing Structural Summation Properties of Weights: The prescriptive model

shows that regardless of the magnitude of an expert’s judgmental errors and the fractiles elicited,

the weights for the estimation of the mean and standard deviation add up to 1 and 0, respectively.

This structural property explains the numerical findings in Pearson and Tukey (1965), Lau et al.

(1999, 1996) and other moment-estimation literature that has assumed judgmental errors not to

exist. The assumption of absence of judgmental errors considered in these articles is a special case

in our model when the judgmental errors are set equal to 0.
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• Novel Quantification of Expertise into Equivalent Sample Size: Our approach estab-

lishes a new quantification of expertise: it specifies the size of a random sample that would provide

estimates of mean and standard deviation with the same precision as that of the estimates obtained

using expert’s judgments for quantiles. This equivalence enables an objective comparison of experts.

• Framework for Combining Estimates from Multiple Experts and Data: In our

approach, the optimal weights provide point estimates and the variability in the estimates of the

moments. This information for variability enables us to combine quantile judgments from multiple

experts in a manner that is consistent with the extant theory of combining point forecasts, and

combine parameter estimates with data as they become available, in a Bayesian fashion.

1.2.3. Contribution to Practice: Section 6 focuses on practice. We provide a step-by-step

approach to quantifying an expert’s judgmental errors, and then discuss in detail some practical

issues observed during this quantification at Dow. Specifically, we discuss a bootstrapping approach

to separate judgmental errors from sampling errors during the error quantification process, and show

that the information provided by the expert is equivalent to 5–6 years of data collection at the firm

using our approach. We also discuss our experience with the potential drawbacks of eliciting extreme

quantiles during the implementation. We found that experts sometimes are reluctant to provide

judgments for extreme quantiles because of their (experts’) inability to distinguish between random

variations and systematic reasons as causes of extreme outcomes.

The rest of this paper is organized as follows: In Section 2, we specify a model of judgmental

errors and use it to develop a prescriptive model for deducing mean and standard deviation from

quantile judgments for distributions with a location-scale family. We derive the solution in Section

3 and show that it explains a number of numerical results in the extant literature. In Section 4,

we establish an equivalence of expertise with randomly collected data, and then discuss combining

judgments from multiple experts and combining judgments with data. Section 5 extends the results

to Johnson distributions. Section 6 describes the error quantification process that feeds into the

prescriptive model, its implementation at Dow AgroSciences, and analysis using Dow’s data. Section

7 concludes with a summary.
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2. Two-Step Approach

We consider a real valued continuous random variable X, whose distribution is to be estimated.

The probability density function (pdf) of X is denoted as φ(x;θ), where θ = [θ1, θ2, . . . , θn]t are

the parameters of the pdf. Similar to Lindley (1987), O’Hagan (2006) and others, we assume that

the distribution family is known from the application context, but the parameters are not known.

The cumulative distribution function (cdf) of X is denoted as Φ. The expert provides her quantile

judgments x̂i corresponding to probability cdf values pi for i = 1,2, ...,m;m > n. In vector notation,

we denote the quantile judgments as x̂ = [x̂1, . . . , x̂m]t and probability values as p = [p1, . . . , pm]t. The

quantile judgments x̂ are not always equal to the true values x. Specifically, the expert’s judgment

x̂i is composed of a true value xi and a judgmental error ei:

x̂i = xi + ei (1)

In vector notation, the error model is x̂ = x + e. This error model has been used by Wallsten and

Budescu (1983), Ravinder et al. (1988), and others. The proposed approach to deduce the mean

and standard deviation consists of two steps; in Step 1, we quantify the expert’s judgmental errors,

and in Step 2, we set up an optimization model that uses this error information to obtain the best

set of weights for the quantile judgments. These two steps are discussed in Sections 2.1 and 2.2,

respectively.

2.1. Step 1: Quantification of Judgmental Errors

Mathematically, the error ei has two parts: bias δi and residual variation εi, such that ei = δi + εi and

E[εi] = 0. The bias δi captures the average deviation of the expert’s judgments for quantile i from

the true value. The residual variation εi captures the spread in the error due to random variations or

noise in the expert’s estimation process for quantile i. A comparison process using historical data can

quantify the bias and residual variation. In this process, the expert provides his quantile judgments

x̂il for a number of distributions l=1,2,...,L of uncertainties. For expositional ease, we assume for

now that the true values xil of these quantiles are available (in Section 6.4 we consider the case when
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the available values xil are subject to sampling variations). For each distribution l, we then compare

xil with the expert’s judgments x̂il and determine the errors as êil = x̂il −xil, and determine the bias

for the quantile i as δ̂i =
∑L

l=1 êil/L. We subtract this bias from individual errors to obtain unbiased

errors, ε̂il = êil − δ̂i. Then we determine the symmetric m×m variance-covariance matrix Ω of the

unbiased errors ε̂il. This matrix summarizes the residual variation in the expert’s judgments for the

m quantiles. The diagonal elements of this matrix ωii = V ar(εi) denote the variance in the unbiased

error of quantile i. The off-diagonal elements are covariances of errors ωij = Cov(εi, εj). The unbiased

quantile judgments are obtained as q̂ = x̂− δ̂ or using x̂ = x + δ̂ + ε̂ as q̂ = x + ε̂. Then the error

information Ω is input into the optimization model discussed next.

2.2. Step 2: Optimization Problem Given Judgmental Errors

We seek to derive weights wμ = [wμ1,wμ2, ...,wμm]t and wσ = [wσ1,wσ2, ...,wσm]t to obtain the esti-

mates of the mean μ̂ and standard deviation σ̂ as weighted linear functions μ̂ = wμ
tq̂ and σ̂ = wσ

tq̂.

Since the unbiased judgments q̂ are subject to variations specified by Ω, the estimates μ̂ and σ̂ have

variances V ar[wμ
tq̂] and V ar[wσ

tq̂], respectively. Smaller values of the variances of these estimates

are desirable as it would imply that the estimates are more precise. Accordingly, we seek weights wμ

and wσ that minimize the variance in the estimates μ̂ and σ̂, respectively. This can be accomplished

by solving the following optimization problem twice, first with a = μ, and then with a = σ.

min
wa

V ar[wa
tq̂] (2)

s.t. E
[
wa

tq̂
]
= a (3)

The optimization constraint (3) imposes another property that is intuitively desirable: the estimates

are unbiased — i.e. on average the estimated values μ̂ and σ̂ are equal to the true value of the mean

and standard deviation, respectively.

Although this problem formulation is intuitively appealing, it is not operational since the value

of a is needed in (3) to obtain the weights wa, but the value of a is unknown and we seek weights

wa to estimate it. No analytical solution is known to exist for this problem in the decision analysis

literature. Nevertheless, we establish in the next section that for random variables with distributions
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of a location–scale family, properties of these probability distributions can be used to restate the

problem in a form that does not have this circularity and that is analytically solvable.

3. Weights for Quantile Judgments

In Section 3.1 we reformulate the problem (2)–(3) for distributions of a location-scale family which

are used extensively to model symmetric and skewed uncertainties. The results for these distributions

are also a basis for deducing the moments of the Johnson-Family of distributions that provide a

greater flexibility in modeling uncertainties. The optimal weights for the reformulated problem and a

discussion on the structural properties of the optimal weights is in Sections 3.2 and 3.3, respectively.

3.1. Reformulation for Distributions of a Location-Scale Family

We first transform the formulation (2)–(3) to an analytically tractable form using two properties of

distributions of a location–scale family. The first property connects the quantiles of the distribution

of a location–scale family to its parameters in a linear fashion: Let θ1 ∈ R and θ2 ∈ R++. Then

if X is a location–scale random variable with pdf φ(∙;θ) where θ1 and θ2 are location and scale

parameters respectively, then a specific value x can be expressed as x = θ1 + θ2z where z denotes

the value of standardized random variable Z with the standardized pdf φ(∙ ;θ) at parameter values

θ = [0,1]t(Casella and Berger 2002).

Using the property x = θ1 + θ2z, we can write the relationship q̂i = xi + εi between the unbiased

quantile judgment and the true value as q̂i = θ1 + θ2zi + εi, where zi is the z value for probability pi.

In a more compact notation, we can write the relationship between unbiased judgments q̂ and the

parameters θ as

q̂ = Zθ + ε (4)

where Z is the m× 2 matrix formed as Z = [1,z], z is the column vector of standardized quantiles

corresponding to the probabilities p, and 1 is a column vector of ones.

The second property below connects μ,σ to θ linearly.
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Lemma 1 Let X be a random variable with finite jth moments for j = 1, 2, . . . , k, Then

μ = μ1(θ) = [1, κ1]θ, and

σ =
√

μ2(θ)−μ1(θ)2 =
[
0,
√

κ2 −κ2
1

]
θ (5)

if and only if X has a distribution with a location–scale family, where κ = [κ0, κ1, κ2, . . . ] are the

kth raw moments μk(0,1) of the corresponding standardized random variable.

The values of κ are documented in the literature, for example in Johnson et al. (1994). If X is a Nor-

mally distributed random variable, we have (κ0, κ1, κ2) = (1, 0, 1); other distributions of location–

scale family include the Logistic distribution (κ0, κ1, κ2) = (1, 0, π2/3); the Laplace (κ0, κ1, κ2) =

(1, 0, 2); and the Gumbel (κ0, κ1, κ2) = (1, −γ, γ2+ π2

6
). We will use the generalized form a = atθ;a∈

{μ,σ}, where at = [1, κ1] for mean a = μ, and at =
[
0,
√

κ2 −κ2
1

]
for standard deviation a = σ in the

subsequent discussion.

Using the two properties of distributions of a location-scale family, we now reformulate the problem

(2)–(3). We start with constraint (3) and using (4) rewrite it as:

E
[
wt

aq̂
]
= E

[
wa

t(Zθ + ε)
]
= wt

aZθ = atθ;∀θ1 ∈R, θ2 ∈R++ =⇒ wt
aZ = at (6)

The first simplification is obtained because the errors are unbiased, E[ε] = 0, and the final simplifi-

cation results because the third equality must be valid for all θ1 ∈R, θ2 ∈R++.

Similarly, substituting (4) in the objective function (2), we obtain:

Var
[
wt

aq̂
]
= E

[ (
wt

aq̂−E
[
wt

aq̂
])2 ]

= E
[
(wt

a(Zθ + ε)−wt
aZθ)2

]

= E[wt
aεεtwa ] = wt

aΩwa. (7)

With these two relationships, the optimization problem (2)–(3) of obtaining the weights leading to

estimates of the mean and standard deviation is rewritten as follows:

min
wa

wt
aΩwa (8)

s.t. wt
aZ = at

where the solution is μ̂ = w∗
μ

tq̂ for at = [1, κ1] and σ̂ = w∗
σ

tq̂ for at =
[
0,
√

κ2 −κ2
1

]
. This problem

is now tractable and we discuss its solution next.
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3.2. Optimal Weights and Structural Properties

We first establish the uniqueness of the solution to problem (8). The matrix Ω is a covariance matrix,

and therefore it is positive definite. It follows that the problem (8) is a quadratic–convex problem.

The next result follows from convexity.

Lemma 2 There is a unique set of optimizing weights w∗
a for problem (8).

These weights are obtained by solving a Lagrange formulation of problem (8). The Lagrange

formulation is necessary to incorporate the constraint that the estimates obtained for the mean and

standard deviation be unbiased.

Theorem 1 The weights that solve problem (8) are given by w∗
a
t = at(Z

t
Ω−1Z)−1Z

t
Ω−1.

The weights w∗
μ are obtained by setting at = [1, κ1], and the weights w∗

σ are obtained by setting

at =
[
0,
√

κ2 −κ2
1

]
in Theorem 1. The conspicuous feature of the optimal weights w∗

μ
t,w∗

σ
t is that

they are explicit functions of the expert’s precision encoded in Ω. It follows that different experts may

have different degrees of precisions in their judgmental estimates as captured in different matrices

Ω. And these differences will lead to different sets of weights for the experts.

Example: At Dow AgroSciences, we elicited the 10th, 50th, and 75th quantiles of the Normally

distributed yields. For these quantiles and the Normal distribution, Z
t

=
[

1 1 1
−1.285 0 0.674

]
. Suppose

that the covariance matrix is Ω =
[

70 0 44
0 40 0
44 0 90

]

. Using Theorem 1, the weights for the three quantiles

for obtaining the mean would be w∗
μ

t =(0.13, 0.63, 0.24) and the weights for the computation of the

standard deviation would be w∗
σ

t=(-0.54,0.10, 0.44). If the covariance matrix of a different expert is

Ω =
[

70 0 55
0 20 0
55 0 70

]

, the weights would change to w∗
μ

t =(0.08, 0.76, 0.16) and w∗
σ

t =(-0.52,0.03,0.49).

Another desirable property of the weights w∗
μ and w∗

σ obtained in Theorem 1 is that they are

functions of the standardized quantiles z and hence of the elicited probabilities p, but they do not

depend on the actual values of μ,σ (as illustrated in the example above). Therefore, the variances in

the estimates μ̂, σ̂ do not depend on the true values of μ,σ. This feature means that the structural

properties and the analysis of the weights discussed in the remainder of the paper are universally

applicable for all true values of μ,σ.
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3.3. Flexible Elicitation and Generalization of Results in Extant Literature

In this section, we discuss several flexibilities and generalizations provided by our approach over the

existing decision analysis literature. The first generalization of our approach is that the expert can

provide judgments for any set of quantiles that he is comfortable estimating, i.e. he is no longer

restricted to providing his judgments for the median and 2/4/6 specific symmetric quantiles specified

in extant literature such as Lau et al. (1996), Lau and Lau (1998), and Lau et al. (1999). This

flexibility is also useful for a decision analyst who no longer needs to convince an expert to provide

judgments for specific quantiles and instead can focus on understanding why the expert believes that

he can provide better judgments for his chosen quantiles. We discuss one such example in Section 6.2.

The second generalization of our approach is that it provides an analytical foundation to a numerical

property observed consistently in the extant literature that the weights add up to a constant.

Proposition 1 The weights for quantiles add up to constants. Specifically,
m∑

i=1

w∗
μi = 1, and

m∑

i=1

w∗
σi = 0.

This result is true regardless of the numerical values of Ω; therefore it holds true even when

the judgmental errors are negligible or are ignored. This is the framework discussed in a number

of articles in the decision analysis literature (see Pearson and Tukey 1965, Perry and Greig 1975,

Johnson 1998, Keefer and Verdini 1993). This literature, after a numerical search, assigns specific

sets of weights to the error-free estimates of symmetric quantiles (e.g., 5th, 50th, and the 95th

quantiles), to estimate the mean and standard deviation. These weights add up to 1 and 0 for the

mean and standard deviation, respectively. For example, Pearson and Tukey (1965) suggest weights

of 2/3 for the median and weights of 1/6 for two symmetric quantiles (5th and 95th) to estimate the

mean (equations 9 and 10 in their paper), and equal weights with opposite signs for two symmetric

quantiles to estimate the standard deviation. Johnson (2002, 1998) also suggests weights for the

median and four/six symmetric quantiles; their suggested weights for the mean add up to 1, and

the weights for the standard deviation add up to 0. Proposition 1 establishes that the additivity

properties observed numerically in these articles are structural properties of probability distributions

and hold true even when quantile judgments are subject to unbiased judgmental errors.
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Third, our approach validates observations made in the literature on the use of identical weights

for the estimation of the first and second moment. Articles such as Keefer and Bodily (1983) use the

same set of weights for the estimation of the mean and the variance. They report a good accuracy of

these common weights to estimate the mean but not the standard deviation. In light of Proposition

1 and Theorem 1, this poor performance for the estimation of standard deviation is not surprising.

Theorem 1 states that the optimal weights for estimating the mean and standard deviation are

different; the weights for the standard deviation depend on κ1, κ2 but the weights for the mean

depends only on κ1. Their summation properties are also different as established in Proposition

1. Therefore, using the optimal weights for the estimation of the mean to estimate the standard

deviation or vice-versa can result in a poor match between the assessed and true value.

A number of articles in the extant literature have relied on the assumption that judgmental errors

are absent. The fourth generalization of our approach is that the weights for this assumption are

obtained by substituting Ω = KΩI where ΩI is an identity matrix in Theorem 1, as a special case.

We formalize this result in Proposition 5 in Section 4.4. Fifth, using Theorem 1, we can determine

the optimal weights when Ω changes. For illustrative purposes, consider unbiased judgments for

the median q̂2 and two other quantiles q̂1, q̂3, one in each tail, when the standardized value of

the median z2 = 0, as is the case with symmetric distributions. The weight on the median for

the estimation of the mean is equal to wμ2
=

c1−
√

V ar(q̂2)(z1−z3)c2

c3V ar(q̂2)−2
√

V ar(q̂2)(z1−z3)c2+c1
, and for the estimation

of the standard deviation is equal to wσ2 =
c4−

√
V ar(q̂2)(z1−z3)c2

c3V ar(q̂2)−2
√

V ar(q̂2)(z1−z3)c2+c1
, where c1 = z2

3V ar(q̂1) +

z2
1V ar(q̂3)− 2z1z3ρ13

√
V ar(q̂1)V ar(q̂3), c2 = z1ρ23

√
V ar(q̂3) − z3ρ12

√
V ar(q̂1), c3 = (z1 − z3)2, and

c4 = z3V ar(q̂1)+ z1V ar(q̂3)+ (z1 + z3)ρ13

√
V ar(q̂1)V ar(q̂3) (details in the proof for Proposition 2).

Suppose that the expert’s precision for the estimate of the median improves — i.e., V ar(q̂2)

decreases. One would expect the weight w∗
μ2 to progressively converge to 1 and the remaining two

weights w∗
μ1

,w∗
μ3

for the 10th and the 75th quantiles respectively to converge individually to 0.

Similarly, we would also expect the weight for the estimation of the standard deviation w∗
σ2 to

converge as V ar(q̂2) decreases. The following result validates this intuition.

Proposition 2 (i) For the estimation of the mean, lim
V ar(q̂2)→0

w∗
μ2 = 1. Furthermore, this limit is

reached from above if z1ρ23

√
V ar(q̂3) ≥ z3ρ12

√
V ar(q̂1). Otherwise it is reached from below.
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(ii) For the estimation of the standard deviation, lim
V ar(q̂2)→0

w∗
σ2 = c4/c1. Furthermore, this limit is

reached from above if ρ23

√
V ar(q̂3) ≥ ρ12

√
V ar(q̂1). Otherwise it is reached from below.

This process of reassigning weights to quantile judgments in response to an improved precision is

consistent with the practice of assigning weights to multiple point assessments that are proportional

to the precision of the assessments to obtain one point estimate, as discussed in Griffin and Tversky

(2002). In addition, one can determine the impact of eliciting one specific quantile instead of another.

For example, assuming that the expert can provide different quantiles with equal judgmental error,

one could determine the slope ∂([1,κ1](Z
t
Ω−1Z)−1[1,κ1]

t

∂zi
keeping Ω constant and determine the value of

zi at which the variance [1, κ1](Z
t
Ω−1Z)−1[1, κ1]

t

is minimum.

4. Exploiting Quantification of Judgmental Errors

We now discuss four benefits of quantifying the expert’s judgmental errors using our approach. In

Section 4.1, we determine the size of a randomly drawn sample that is equivalent to the expert’s

expertise. In Sections 4.2 and 4.3, we discuss combining judgments of one expert with the judg-

ments from other experts, and with data, respectively. In Section 4.4, we quantify the differences in

precisions of the estimates obtained using our approach over approaches ignoring judgmental errors.

4.1. Equivalence Between Expertise and Size of a Random Sample

Expert input is sought for estimating probability distributions when collecting data is costly. The

expert’s quantile judgments, after using our approach, lead to point-estimates of μ,σ and the vari-

ances in these estimates just as if we had collected sample observations of the random variable

X. Specifically, it is well known that a sample mean has a variance of σ2/Nμ where Nμ is the

sample size. In our quantile based approach, the variance in the estimate of the mean is equal to

V ar[μ̂] = w∗
μ

tΩw∗
μ , which can be simplified to [1, κ1](ZtΩ−1Z)−1[1, κ1]

t (details are in Section 6

of Appendix). By equating these two variances, we can determine the size of a randomly collected

sample that would provide the same precision of the estimate of the mean as the expert does. We call

this size an equivalent sample size for the mean and denote it by Nμ. We can do a similar analysis

for standard deviation, and obtain the equivalent sample size for the standard deviation.
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Proposition 3 The precision of the estimates μ̂, σ̂ obtained using an expert’s quantile judgments

with judgmental error matrix Ω is comparable to the precision of estimates obtained from an iid

sample of size Na, where Nμ = σ2

[1,κ1](ZtΩ−1Z)−1[1,κ1]t
, and Nσ ≈

σ2




∑4

j=0(−κ1)jκ4−j

(κ2−κ2
1)2

−
(∑2

j=0(−κ1)jκ2−j)
2

(κ2−κ2
1)2





4[0,
√

κ2−κ2
1](ZtΩ−1Z)−1[0,

√
κ2−κ2

1]
t .

This result has profound implications for quantifying expertise as various experts can be ranked

objectively based on the magnitude of their equivalent sample size, which depends directly on the

judgmental errors quantified in Ω. This ranking is obtained even though the true values μ,σ remain

unknown. If a decision analyst has some idea on the range of the value of σ from contextual details

then the upper bound and lower bound on equivalent sample sizes are obtained by substituting the

upper and lower values of the range in the expressions for Nμ,Nσ. This quantification also provides

a tangible metric to assess the value of increased precision in the expert’s judgments, e.g. Akcay

et al. (2011) consider the benefit of estimating distribution moments from a larger sample and show

that an increase in sample size from 10 points to 20 points reduces the operating cost of a system

by 10–20%. Our quantification of expertise into data points provides a natural connection to these

results.

4.2. Combining Estimates from Multiple Experts

The technical development so far is readily extendible to multiple experts in a manner that is

consistent with the extant theory of combining point forecasts from multiple sources. To use our

approach for multiple j = 1,2, ..., n experts, we use the matrix Ω =








Ω11 Ω12... Ω1n

Ω12 Ω22... Ω2n

...
Ω1n Ω2n... Ωnn








where Ω11 is

the m×m matrix for residual errors of expert 1, the matrix Ω12 is the m×m covariance matrix for

the errors of experts 1 and 2, and so on. The matrix Ω is used in Theorem 1 along with matrix Zt of

size 2×mn, Zt = [Z1
t Z2

t , ...,Zn
t], to obtain the weights for each quantile provided by each expert.

The weights thus obtained can then be decomposed as a product of a marginal weight that is

specific to expert j and conditional weights for the m quantiles for this expert. The values of the

experts’ marginal weights are consistent with the extant literature on combining point estimates

obtained from noisy sources or experts. Bates and Granger (1969) and Dickinson (1975) combine
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point estimates by assigning them weights that minimize the variance of the weighted linear estimate,

and show that the optimal weight assigned to a point estimate is inversely proportional to the

variance of the noise in the estimate’s source. Thus, for two sources where the first source has half

the variance in noise than the second source and both noises are mutually independent, the optimal

weights for the forecasts of the two sources are 2/3 and 1/3, respectively. In our context, even

though we seek to aggregate multiple quantile judgments from multiple experts as opposed to point

estimates from multiple experts, and to obtain an aggregated estimate of the mean and standard

deviation as opposed to an aggregated point forecast, the expert-specific weights obtained after a

decomposition are consistent with this point-estimation literature.

For illustration, we consider the special case where n experts j=1, 2, ..., n provide judgments for

the same set of quantiles, i.e. Zt = [Z0
t Z0

t , ...,Z0
t], and we assume that the covariance matrix of

each expert j is given by Ωjj = rjΩ0 ∀j and further assume that the errors of any two experts are

mutually independent, i.e. all elements of Ωij , i 6= j are equal to 0. The weights for the mn quantile

judgments obtained using Theorem 1 are denoted as w∗
a with elements w∗

ak for k = 1, 2, ..., mn and

a∈ {μ,σ}. The first m weights are for expert 1, the next m weighs are for expert 2 and so on. We can

write these weights as w∗
a =

[
w1

a, ..., wn
a

]
where wj

a is the vector of weights of expert j. We can also

decompose the weights w∗
a as the product of marginal weights αj for expert j and a common vector

of m conditional weights wc
a that would be obtained if each expert was the only one available, i.e.,

w∗
a =

[
α1wc

a, ..., αnwc
a

]
. The values of αj and the relationships between wj

a and wc
a are as follows:

Proposition 4 Consider experts j = 1, 2, ..., n whose covariance matrices are rjΩ0;∀j, and further

assume that the judgmental errors across experts are mutually independent. Then,

(i) If any expert j was the only expert available, his optimal weights would be wc
a
t =

at(Z0

t

Ω−1
0 Z0)−1Z0

t

Ω−1
0 independent of the value of rj.

(ii) When the quantile judgments of the n experts are considered simultaneously, the weights for each

expert j are obtained as wj
a = αjwc

a, with marginal weights αj = (1/rj)/R, where R =
n∑

j=1

(1/rj).

As an illustration, suppose that we have two experts with r1 = 1, r2 = 2. The constant R = (1/1)+

(1/2) = (3/2). It follows from part (ii) of the Proposition that the expert-specific marginal weights
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are α1 = (1/r1)/(3/2) = 2/3 and α2 = (1/r2)/(3/2) = 1/3 regardless of the quantiles estimated. These

are the same weights that one would have used while combining point estimates from multiple sources

as discussed in Bates and Granger (1969) and Dickinson (1975).

Further consider the case when Ω0 =
[

80 30 35
30 22 30
35 30 68

]

for the estimation of the 10th, 50th and the 75th

quantiles. If the quantile judgments of only expert j are considered separately, the estimation weights

would be obtained as [wc
μ,wc

σ]
t

=
[
−0.167 1.484 −0.317
−0.576 0.190 0.386

]
for either expert j by using Z

t
=
[

1 1 1
−1.285 0 0.674

]

and Ω0 in Theorem 1, as stated in part (i) of Proposition 4. When both experts are available, the

optimal weights for their quantile judgments are obtained by multiplying the independent weights

wc
a with the expert-specific marginal weight αj as wj

a = αjwc
a. For example, the weights for the mean

are obtained as w1
μ = (2/3) × (−0.167,1.484,−0.317) = (−0.111,0.989,−0.211) and w2

μ = (1/3) ×

(−0.167,1.484,−0.317) = (−0.055,0.495,−0.105) for the first and second expert, respectively. The

same weights are also obtained directly by first constructing the combined matrix Ω =
[
r1Ω0 0
0 r2Ω0

]

and using it in Theorem 1 with matrix Z
t

= [Z0
t,Z0

t] =
[

1 1 1 1 1 1
−1.285 0 0.674 −1.285 0 0.674

]
, which gives

w∗
μ = [−0.111,0.989,−0.211,−0.055,0.495,−0.105].

Finally, we note that the equivalent sample sizes Nμ,Nσ for a group of experts can be determined

using Proposition 3. This size can be compared with equivalent sample sizes of individual experts

to quantify the additional value provided by every expert.

4.3. Copula based Approach for Bayesian Updating Using Data

We now explain how to combine the quantile judgments with data, using results for Bayesian updat-

ing discussed in Gelman et al. (2003). The parameter estimates θ̂1, θ̂2 for the distribution are obtained

from μ̂, σ̂ using the linearity property discussed in Lemma 1. The Lemma states that μ = θ1 + κ1θ2

and σ =
√

κ2 −κ2
1θ2. Solving this linear system of equations provides θ1 = μ − κ1√

κ2−κ2
1

σ and θ2 =

1√
κ2−κ2

1

σ. Substituting the values of the estimates μ̂ and σ̂ from Theorem 1, we obtain

θ̂1 = μ̂−
κ1√

κ2 −κ2
1

σ̂ = ([1, κ1]− [0, κ1]) (Z
t

Ω−1Z)−1Z
t

Ω−1q̂ = [1,0](Z
t

Ω−1Z)−1Z
t

Ω−1q̂

θ̂2 = σ̂
1

√
κ2 −κ2

1

= [0,1](Z
t

Ω−1Z)−1Z
t

Ω−1q̂
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That is, θ̂i = at
θi

(Z
t
Ω−1Z)−1Z

t
Ω−1q̂ = w∗

θi

tq̂; i = 1,2 with at
θ1

= [1,0] and at
θ2

= [0,1]. The

expected values of the estimates are E[θ̂i] = at
θi

(Z
t
Ω−1Z)−1Z

t
Ω−1q̂, the variances are Var

[
θ̂i

]
=

at
θi

(Z
t
Ω−1Z)−1aθ̂i

, and the covariance is Cov[θ̂1, θ̂2] = at
θ1

(Z
t
Ω−1Z)−1aθ2

(see the details in Section 6

of Appendix). The correlation ρ of the two parameter estimates is ρ = Cov[θ̂1,θ̂2]√

Var
[

θ̂1

]
Var
[

θ̂2

] . Therefore,

we have available the moments of the distributions of the estimates of θ. These distributions are

the prior distributions for θ before any data collection. New data, when available, can be combined

with these priors to obtain posterior distributions for θ.

To do this we first further characterize the prior distributions. We know the means, variances,

and correlation of the prior distributions for θ1, θ2 as noted above. The parametric forms of the prior

distributions are obtained during the error quantification process described in Section 2.1. For each

distribution used in the error quantification process l=1,2,...,L with true values θ1l, θ2l we determine

the unbiased errors in the estimation of θ1, θ2 as e1l = θ1l−w∗
θ1

tq̂l and e2l = θ2l−w∗
θ2

tq̂l, respectively,

where q̂l are unbiased quantile judgments for distribution l. Then we assume parametric families to

accurately represent these two error streams. Let the distributions’ cdfs be specified as F1 and F2,

respectively. The parametric families of the two distributions may be different. The Normal Copula

approach explained next is a general approach to estimate the joint prior mass on the domain of

θ1, θ2 for such situations (for details, see Wang and Dyer 2012).

We first create an equi-spaced grid with points θ1 = θ1i, θ2 = θ2j ; i=1,2,...,I; j=1,2,...,J, over the

domain of θ1 ∈ [θ1, θ̄1], θ2 ∈ [θ2, θ̄2]. The domain can be guessed at first and then refined iteratively by

removing those end regions that do not have any mass in the posterior. To determine the probability

mass for the prior distribution on each point in grid, we use a Normal Copula based simulation (for

details see Wang and Dyer 2012). We draw sets r=1,2...,R of two uncorrelated standard Normal

values vr
1, v

r
2 and then translate them into draws θr

1, θ
r
2 from the correlated prior distributions as

θr
1 = F−1

1

(
ΦN

(
vr
1

√
(1+ ρ)/2+ vr

2

√
(1− ρ)/2

)
;E[θ̂1], V ar(θ̂1)

)
(9)

θr
2 = F−1

2

(
ΦN

(
vr
1

√
(1+ ρ)/2− vr

2

√
(1− ρ)/2

)
;E[θ̂2], V ar(θ̂2)

)
(10)

where ΦN denotes the standard Normal cdf. Then we determine the grid-point where this draw

belongs. After R iterations, we count the number of draws in each point in the grid to obtain the
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2
 after 20 observationsFigure 1 Bayesian updating of θ1 for Ω =




78.99 29.38 33.33
29.38 21.92 30.30
33.33 30.30 68.17



 obtained at Dow with Gamma prior distributions.

The expert was assumed to provide values of 74,105 and 115 for the 10th, 50th, and 75th quantiles. The

updating was done with 20 points. See Section 9 of Appendix for details.

frequency of each point in the grid. Dividing this frequency by R, we obtain the prior probability

mass Pr(θ1 = θ1i, θ2 = θ2j). The Bayesian updating process follows p. 284 of Gelman et al. (2003).

When a sample of k=1,2.,...,K data points y = [y1, y2, ..., yK ] is available, the joint posterior mass

function is obtained by visiting each point in the grid, multiplying its prior mass Pr(θ1 = θ1i, θ2 = θ2j)

with the likelihood ΠK
k=1φ(yk|θ1i, θ2j) and then scaling by the total mass as,

Pr (θ = (θ1i, θ2j)|y) =
ΠK

k=1φ(yk|θ1i, θ2j)Pr(θ1 = θ1i, θ2 = θ2j)
∑I

i=1

∑J

j=1 ΠK
k=1φ(yk|θ1i, θ2j)Pr(θ1 = θ1i, θ2 = θ2j)

(11)

The marginal posterior mass functions for θ1, θ2 are obtained from the joint mass function. Figure

1 provides an illustration of the Bayesian updating of θ1 using 20 data points for our application

context at Dow. A complete set of details along with the results for θ2 is in Section 9 of Appendix.

4.4. Benefit of Incorporating Judgmental Errors

We now quantify the benefit of using the information on judgmental errors for estimating μ̂, σ̂ over

two benchmarks that ignore these errors.

Benchmark I: Ignoring Judgmental Errors and Eliciting m>2 Quantiles: In the first

benchmark, we ignore judgmental errors but elicit m quantile judgments (m>2 ) and find the weights

that minimize the sum of squared errors:
{
∑m

i=1

(
μ+ziσ− q̂i

)2
}

. It can be shown that this problem

provides estimates âI = wI∗
a

t
q̂ for a∈ {μ,σ} with the weights wI∗

μi = (S2−S1zi)

mS2−S2
1

and wI∗
σi = S1(S2−S1zi)

S2(mS2−S2
1)
−
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zi
S2

where S1 =
∑

zi and S2 =
∑

z2
i (superscript I denotes Benchmark I), and that the problem is a

special case of our optimization problem in (8) when the expert is equally proficient at all judgments:

Proposition 5 The problem Minμ,σ

{
∑m

i=1

(
μ + ziσ − q̂i

)2
}

is equivalent to problem (8) and its

solution is obtained by assuming a non-informative covariance matrix Ω = KΩ′ where K > 0 is a

scalar, the diagonals elements of Ω′ are equal to 1, and the off-diagonal elements are equal to the

correlation value ρ.

Therefore the weights wI∗
μ and wI∗

σ have all the structural properties discussed earlier in Section

3.3, including summation to 1 and 0 for the mean and standard deviation, respectively.

A pertinent issue here is when do the weights for this benchmark wI∗
a differ significantly from the

optimal weights w∗
a discussed in Theorem 1? And what are the implications of using wI∗

a instead of

w∗
a? We answer the first question here and the second question in Proposition 6 where we establish

that the estimates âI = wI∗
a q̂ are less precise as compared to estimates â = w∗

aq̂. Proposition 5 implies

that the weights wI∗
a coincide with the optimal weights w∗

a only when all variances of judgmental

errors in Ω and all covariances of judgmental errors in Ω are equal — i.e. when the expert is equally

proficient at estimating all quantiles. Therefore the optimal weights w∗
a capture both the quantile-

specific information (through Z) and the expert’s variability information through Ω. When Ω is

non-informative as is the case when the expert is equally proficient at estimating all quantiles, the

weights wI∗
a capture only the quantile-specific information in Z. It follows that the more information

present in Ω (or equivalently the larger the differences in the expert’s ability to estimate various

quantiles) the larger the gap between the optimal weights w∗
a and the error ignoring weights wI∗

a .

Figure 2 provides a numerical illustration for the covariance matrix Ω =
[

80 0 0
0 216 0
0 0 80

]

when the 10th,

50th, and 75th quantiles are elicited. The figure shows the variations in weights w∗
μ and wI∗

μ for the

estimates of the 10th and 50th quantiles as the variance in judgmental error for the median V ar(q̂2)

decreases from 216. The values of w∗
μ and wI∗

μ coincide when the variance in judgmental error for

the median is equal to 80. At this point, the expert is equally good at estimating all quantiles.

Benchmark II: Eliciting m = 2 Quantiles: This benchmark builds on the previous one and

was suggested by an anonymous reviewer: if judgmental errors are not to be considered, then elicit two
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Figure 2 Change in the weights for the 10th, and 50th quantiles for the estimation of the mean as the precision of

the expert’s judgment of the 50th quantile changes.

quantiles and deduce the two parameters from these quantiles by solving two simultaneous equations.

For example, for quantile judgments q̂i; i = 1,2 of a Normal distribution, we can write q̂1 = μ̂II +z1σ̂
II

and q̂2 = μ̂II +z2σ̂
II (superscript II denotes Benchmark II). From these two equations, we obtain the

estimates μ̂II = q̂1z2−q̂2z1
z2−z1

and σ̂II = q̂2−q̂1
z2−z1

. These estimates imply the weights wII∗
μ = [ z2

z2−z1
,− z1

z2−z1
]t

for q̂1 and q̂2, respectively, to estimate the mean, and the weights wII∗
σ = [ 1

z2−z1
,− 1

z2−z1
]
t

for q̂1 and

q̂2, respectively, to estimate the standard deviation. These weights add up to 1 for the mean and to

0 for the standard deviation, consistent with the output of our model.

We now quantify the effect of using weights wI∗
a and wII∗

a from Benchmarks I and II, respectively,

instead of the optimal weights w∗
a. The variances of the estimates â, âI , âII for a∈ {μ,σ} are equal to

w∗
a
tΩw∗

a,w
I∗
a

t
ΩwI∗

a and wII∗
a

t
ΩwII∗

a respectively. The following result establishes that the estimate

â has the smallest variance. The equivalent sample size for the expert obtained using our approach

Na is also larger than the sizes N I
a ,N II

a for the benchmarks.

Proposition 6 (i) V ar(âI)≥ V ar(â) and V ar(âII)≥ V ar(â) for a∈ {μ,σ}.

(ii) N I
a ≤Na and N II

a ≤Na for a∈ {μ,σ}.

The differences in the variances of the estimates and in the equivalent sample sizes from our

approach and the two benchmarks can be significant. For brevity, we focus on the estimation of the

mean. Figure 3(a) shows the variances of the estimates of mean obtained from our error-including

approach and Benchmark I for the variance-covariance matrix Ω =
[

80 0 0
0 216 0
0 0 80

]

when the variance in
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(a) Variances in μ̂ and μ̂I
(b) Difference in the variances of μ̂ and μ̂I

Figure 3 Changes in the variance of the estimated mean as the expert’s residual errors in the judgment for the

50th quantile change.

the judgmental errors for the median V ar(q̂2) = 216 decreases (on the x -axis). As evident in the

figure, the difference in the estimation variances varies significantly and is lowest when V ar(q̂2) = 80.

At this point, the matrix Ω =
[

80 0 0
0 80 0
0 0 80

]

is non-informative, and the weights in our approach and

Benchmark I coincide as shown in Figure 2. Figure 3(b) shows the numerical value of the difference

in the variances. The effect is directionally even stronger for Benchmark II.

It follows from these figures that at V ar(q̂2) = 80 , N I
a = Na, but otherwise N I

a < Na. In Section

6.5, we show for Dow’s application that V ar(â) ≈ V ar(âI)/2 ≈ V ar(âII)/4 and Nμ ≈ 2N I
μ ≈ 4N II

μ

suggesting that the benefits of using our approach over the two benchmarks can be significant.

5. Extensions to Johnson Distributions

The technical development discussed so far for distributions with a location–scale family also enables

us to estimate the parameters of Johnson distributions used to model probability distributions with

a greater degree of flexibility. The key connection between a distribution with a location–scale family

and Johnson distributions is that a random variable X with Johnson distribution with parameters

θ results in a Normal variable Y with parameters θ after a non-linear monotonic transformation,

g – i.e., g(X) = Y (Johnson 1949). For example, if X is a Lognormal random variable (type 2

Johnson variable), then Y = ln(X) is a Normal random variable. In the absence of judgmental

errors, the estimation of the parameters of X is straightforward. For any x ∈ R we have Pr
{
X ≤

x
}

= Pr
{
g(X) ≤ g(x)

}
where g(x) is non-decreasing in x; hence the pi-quantiles of X and g(X),
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denoted respectively as x(pi) and xg(pi), satisfy the relationship g(x(pi)) = xg(pi). Therefore, one

could simply take the inverse g−1 of the unbiased quantile judgments q̂i to transform them on

the underlying Normal distribution, and then estimate the parameters of this underlying Normal

distribution using the results developed earlier. However, this process does not carry over to when

the expert’s judgments have errors. As an example consider the Lognormal distribution, any elicited

quantile satisfies ln(q̂i) = ln(xi +εi), but clearly ln(q̂i) 6= ln(xi)+ ln(εi). However, we can approximate

g(X) using the second–order Taylor series expansion of g(xi) about q̂i = xi + εi as:

g(xi)≈ g(q̂i)+ g′(q̂i)(xi − q̂i)+
g′′(q̂i)

2
(xi − q̂i)2. (12)

We first write this equation as g(q̂i) = g(xi) + eg
i where eg

i = g′(q̂i)εi −
g′′(q̂i)

2
ε2
i . Hence E

[
eg

i

]
=

− 1
2
g′′(q̂i)V ar(q̂i). We correct this bias by adding 1

2
g′′(q̂i)V ar(q̂i) on the L.H.S. to obtain g(q̂i) +

g′′(q̂i)

2
V ar(q̂i) = g(xi)+ eg

i , and then substitute g(xi) = θ1 + θ2zi to obtain

g(q̂i)+
g′′(q̂i)

2
V ar(qi) = θ1 + θ2zi + eg

i . (13)

We can estimate the parameters θ1 and θ2 of the Normal pdf of g(X) from (13). The variance-

covariance matrix Ω′ for the errors in (13) is approximated as

ω′
ii = E

[ (
eg

i −E
[
eg

i

])2 ]
= E

[ (
g′(q̂i)εi −

1
2
g′′(q̂i)ε2

i +
1
2
g′′(q̂i)V ar(q̂i)

)2 ]

ω′
ij = E

[ (
eg

i −E
[
eg

i

])(
eg

j −E
[
eg

j

]) ]

= E
[ (

g′(q̂i)εi −
1
2
g′′(q̂i)ε2

i +
1
2
g′′(q̂i)V ar(q̂i)

)(
g′(q̂j)εj −

1
2
g′′(q̂j)ε2

j +
1
2
g′′(q̂j)V ar(εj)

) ]

Since g(x) transformations for Johnson distributions are tractable, each term in the expressions for

ω′
ii and ω′

ij admits algebraic simplification. Once the matrix Ω′ is determined, the estimates μ̂, σ̂ of

the underlying Normal distribution are obtained by using Theorem 1 on g(q̂i), replacing Ω with Ω′.

6. Implementation at Dow AgroSciences: Protocol and Bootstrapping for
Quantification of Expert’s quantile judgments

In this section, we discuss a step-by-step approach used at Dow AgroSciences for quantifying an

expert’s judgmental errors. In Section 6.1, we provide the context for expert elicitation. In Sections
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6.2 – 6.4 we discuss the four-step process followed. Section 6.5 analyzes the data and quantifies the

value of using our approach in estimating yield distributions from quantile judgments.

Dow produces and sells several hundred varieties of seed corn, which generates an annual revenue

of $800 million. The seed corn yield obtained during the production of the seed corn is measured

as number of bags (each with 80,000 seeds) per acre of land and it is random. Given this random

seed production yield, Dow faces the classical newsvendor’s tradeoff in determining the optimal area

of land on which to produce the seed corn. Producing the seed corn on a very large area leads to

a high cost; using a small area is risky since the production might be insufficient to meet demand.

Every year, Dow determines the optimal acreage for this trade-off for each variety of seed corn. The

specification of the yield distribution is a critical input for making this decision.

6.1. Need for Quantile Judgments for Yield Distribution Estimation and Expert’s Mental

Model

At Dow, the yield distributions are estimated using expert judgment due to the following biological

reason. Dow has a parent pool of approximately 125 types of corn with specific genes. Corn plants

have male as well as female parts. Therefore, to obtain the parent plants with a specific gene, the

seeds with this gene are planted in a field. Self-pollination on these plants provides seeds with the

same gene. This inbreeding is carried out regularly to replenish the stock of parent seeds. Statistical

distributions for yields obtained from this inbreeding process are available from historical data.

However almost 100% of the seed corn sold by Dow is hybrid seed that is obtained by cross

mating. This cross mating occurs when two different types (or parents) of seed are planted in the

field. Plants of one type, say X (not to be confused with random variable X), are treated chemically

and physically to make them act as female, and the plants of the other type, say Y, are made to act

as male. The cross pollination between these parents provides the hybrid seeds. Among the several

hundred varieties of hybrid seed corn sold every year, only a few have been sold continuously in the

last decade. The average life of hybrid varieties in market is less than two years. Most hybrid seeds

are produced only three or four times. Therefore, sufficient historical yield data necessary to obtain

statistical distribution are not available for most hybrid seeds.
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Figure 4 During cross-pollination the male Y changes the inbred yield distribution of X shown on the left. The

expert’s mental model involves judgments about changes in the location and/or spread of the distribution

due to Y. Possible distributions after cross breeding are shown in dotted lines on the right.

In the absence of these data, the firm relies on a yield expert to estimate the distributions. Figure 4

summarizes the expert’s mental model for estimating the yield distribution of a hybrid seed. Female

plants provide the body on which the hybrid seed grows; the male plants provide the pollen to fertilize

the female plant. Since the female plant nurtures the seed, the available statistical distribution for

the inbreeding for type X provides a statistical benchmark (on the left) for the hybrid seed. The male

affects this distribution during cross-pollination, leading to various likely distributions as shown in

dotted lines (on the right). The expert’s contextual knowledge provides him with insights into how

the distribution will change during cross pollination. In the past, the yield expert has adjusted the

median of the inbreeding distribution higher or lower to provide an estimate of the median yield

for the hybrid seed. Thus, the estimate of the median yield for the distribution of the hybrid seed

production yield is grounded in statistics but is judgmental in nature. There is still a need to estimate

the spread of the yield distribution for the hybrid seed to determine the number of acres on which

the hybrid seed should be grown.

We used the theory developed earlier for the determination of the yield distributions. For deter-

mining the matrix Ω of judgmental errors, we used the following four-step approach. In Steps 1 and

2, we let the expert select the quantiles to estimate and obtained historical data for seeds that were

grown repeatedly. In Steps 3 and 4, we elicited quantile judgments from the expert and quantified

his judgmental errors into Ω by comparing his judgments with the historical data. We then used Ω

to obtain the optimal weights to estimate the mean and standard deviation for a future use.
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6.2. Steps 1 and 2: Selection of Quantiles for Elicitation and Data Collection

In Step 1, we asked Dow to identify a set of hybrid seeds that has been produced repetitively in the

last few years. Overall, Dow found L = 22 such hybrid seeds indexed by l=1,2,...,22, and provided

us with the historical yield data for these seeds. The expert did not see or analyze these data.

Analysis of these data and prior experience at Dow suggest that the yields are distributed Normally.

Theoretical justification also supports this conclusion: when the total area of land is divided into

smaller pieces of land (as is the case at Dow), the total output obtained can be considered as an

aggregation of smaller random outputs, and the Central Limit Theorem is applicable.

In Step 2, for each of the hybrid seeds l=1,2,...,L, we asked the expert to select three quantiles to

estimate. The selection of three quantiles (rather than more than three) was motivated by existing

literature that suggests that three quantiles perform almost as well as five quantiles (Wallsten et al.

2013), as well as the time constraints faced by the expert. The expert is a scientist, he is well-trained

in statistics, and has worked extensively with yield data. His quantitative background and experience

were helpful as he clearly understood the probabilistic meaning and implications of quantiles. The

first quantile he selected was the 50th quantile, since he has estimated this quantile regularly in

the last few years (Table 1 shows that the expert’s assessment of this quantile was very precise

indeed). The extant literature also has established that estimating this quantile has the intuitive

50–50 high–low interpretation that managers understand well (O’Hagan 2006).

We asked the expert to provide us with his quantile judgments for two other quantiles, one in

each tail of the yield distribution, that he was comfortable estimating. The yield expert chose to

provide his judgments for the 10th and the 75th quantiles, for several reasons. First, he has developed

familiarity with these quantiles in the last few years: his statistical software typically provides a

limited number of quantile values including these two quantiles during data analysis, and he is

accustomed to thinking about them. Second, the expert suggested the use of these asymmetric

quantiles because if asked for symmetric quantiles, he would intuitively use his statistical knowledge

and “estimate one tail quantile and calculate the other symmetric quantile using the properties of

the Normal distribution.” This would lead to spurious errors in the deduced quantile judgment.
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Finally, the expert was not comfortable in providing judgments for quantiles that were further out

in the tails, such as the 1st and the 95th quantiles. This reluctance was interesting and highlighted

some subtle disconnects between theory and practice. Some articles (e.g., Lau et al. 1998, Lau and

Lau 1998) have suggested weights for extreme quantiles such as 1 percentile assuming no judgmental

errors. However, the expert found it difficult to estimate extreme quantiles. Specifically, he was

concerned that he might not be able to differentiate between random variations (that we seek to

capture) and acts of nature such as floods (that we seek to exclude) that lead to extreme outcomes.

6.3. Step 3: Elicitation Sequence and Consistency Check

In Step 3, for each distribution l, we obtained the three quantile judgments x̂il(pi); i = 1,2,3; l =

1,2, ...,22;pi = 0.1,0.5,0.75 from the expert. We obtained these judgments in two rounds. In Round

1, for each hybrid l, the expert followed his usual procedure for studying the yield distribution for

the female, looking at the properties of the male, and providing his judgment for the median. We

then asked the expert to provide his judgment for the 10th and 75th quantiles, in that order, in

an Excel file where the expert could enter only the three inputs for the quantiles. This customized

sequence is consistent with the extant literature that suggests first obtaining an assessment for 50–50

odds (Garthwaite and Dickey 1985), and then focusing further on quantiles in the tails. In Round

2 of estimation, to encourage a careful reconfirmation of the judgments provided in Round 1, we

used a feedback mechanism. We used the information from two quantile judgments to make simple

deductions and then asked the expert to validate these deductions. If the expert did not concur with

the deductions, we encouraged him to fine tune the quantile judgments.

As an illustrative example, suppose the expert provided values of 15, 70, and 100 for the 10th,

50th, and the 75th quantiles respectively. The stated values of the 10th and 50th quantiles imply a

mean yield of 70 and standard deviation of 42.92. These two values imply that there is a 50 percent

chance that the yield will be between 41 and 99 (the implied 25th and the 75th quantile). We asked

the yield expert the following question: “Your estimate of the 10th quantile implies that there is

a 50 percent chance that the yield will be between 41 and 99. If you think that this range should

be narrower, please consider increasing the estimate of the 10th quantile. If you think the range
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should be wider, please consider decreasing the estimate of the 10th quantile.” We implemented

this feedback in an automated fashion so that the values in the feedback question were generated

automatically using his quantile estimates. The expert could revisit his input and the accompanying

feedback question any number of times before moving to the next feedback question for the judgment

for the 75th quantile (using the deduced 35th and 85th quantile values obtained from his judgments

for the 50th and 75th quantiles). After finishing this feedback, he moved to the next seed.

6.4. Step 4: Separation of Sampling Errors Using Bootstrapping 2

After the elicitation was complete, to obtain errors we compared the expert’s stated values for the

quantiles with the values obtained from historical data. Recall that we assumed in Section 2 that the

true values of the quantiles xi are available. However, since the number of data points for each seed

at Dow were limited (the largest sample size was 53), the quantile values obtained from the data

were subject to sampling variations that must be explicitly accounted for. Specifically, let x̃i denote

the value of quantile i for the empirical distribution. Then, for the true value xi and the expert’s

estimate x̂i, we have the following decomposition of errors:

x̂i − x̃i = (x̂i −xi)+ (xi − x̃i) (14)

Total Error = Judgmental Error + Sampling Error

The comparison of the expert’s assessment x̂i with the empirical value x̃i has two sources of errors:

the expert’s judgmental error and the sampling error. The judgmental error is the difference between

the quantile judgment and the true quantile (x̂i−xi). The sampling error (xi− x̃i) captures the data

variability that is present because the empirical distribution is based on a random sample of limited

size from the population. The expert did not see the historical data, therefore both sources of errors

can be considered to be mutually independent. Note that if the sample size is large, then the quantile

value obtained from the empirical distribution will be close to the true value; consequently, the

difference (xi− x̃i) is negligible and the expert’s judgmental error completely captures the uncertainty

in the quantile value.

2 We thank an anonymous reviewer for suggesting this procedure.
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Writing (14) in a vector form, we have x̂− x̃ = (x̂−x) + (x− x̃). It follows that the total bias is

equal to

E[x̂− x̃] = E[(x̂−x)]+ E[(x− x̃)] (15)

δt = δ + δs

where δt is the total bias, and δ and δs are the expert’s judgmental bias and the sampling bias

respectively. The expert’s judgmental bias is computed as: δ = δt − δs.

Similarly, the variance in the estimates of quantiles, assuming independence of the data-specific

sampling error and the expert-specific judgmental error, is

V ar[x̂− x̃] = V ar[(x̂−x)]+ V ar[(x− x̃)]

We can write this equation in matrix notation as

Ωt = Ω+Ωs (16)

where Ω is the matrix of covariances of judgmental errors and needs to be estimated for use in our

analytical development described earlier. This matrix is estimated as Ω = Ω t − Ωs. Note that the

matrix Ω must be checked for positive definiteness to be able to take an inverse to obtain the weights

using Theorem 1. We next discuss the estimation of δt and Ωt using Dow’s data, and the estimation

of δs and Ωs using bootstrapping. Note that with a large number of historical observations, Ω '

Ωt,δ ' δt, and the bootstrapping approach is not required.

For Dow’s data, the total bias δt and matrix Ωt were determined using the expert’s assessments

as follows: In each of the two rounds of elicitation, the expert’s quantile judgments x̂il(pi); i = 1,2,3

for hybrid l were compared to the quantiles of the empirical distribution, x̃il(pi). The differences

provided the total errors êil = x̂il(pi)− x̃il(pi). The average error δ̂t
i =
∑L

l=1 êil/L provided the total

bias for each quantile. The vector of biases δ̂t
i constituted δ̂t. We then obtained unbiased errors as

êu
il = êil − δ̂t

i ; using these, we estimated the 3 x 3 variance-covariance matrix Ω̂t. A comparison of Ω̂t

from the first round without feedback and the second round with feedback showed that the feedback

reduced the spread of the errors significantly (by 33%). The covariance matrix Ω̂t and the bias δ̂t

obtained after the second round are shown in Table 1.



29

Ωt =




113.41 50.09 46.83
50.09 42.92 51.46
46.82 51.46 93.37



 Ωs =




34.42 20.71 13.50
20.71 21.00 21.16
13.49 21.16 25.20



 Ω = Ωt −Ωs =




78.99 29.38 33.33
29.38 21.92 30.30
33.33 30.30 68.17





δt =
[
9.43 0.94 −2.48

]
δs =

[
−1.05 0.00 0.55

]
δ= δt − δs =

[
10.48 0.94 −3.03

]

Table 1 variance–covariance matrix and biases after bootstrap adjustment

The sampling bias δs and the variance-covariance matrix Ωs were determined by bootstrapping,

as follows. We had data y1l, y2l, ..., ynll for seed l and corresponding quantiles x̃il estimated using

these data. For each distribution l, we drew a sample indexed p of size nl with replacement from the

data y1l, y2l, ..., ynll and obtained the quantiles for this bootstrapping sample, x̃ilp. We repeated the

process for p=1,2,...,P times. Then we obtained the differences Δilp = (x̃ilp − x̃il), determined the

average difference Δ̄il =
∑

p Δilp/P and then calculated the unbiased differences Δu
ilp = Δilp − Δ̄il.

From these 3 × P unbiased differences, we obtained the covariance matrix Ω̂sl for seed l. Extant

literature suggests that a size of P=100 is usually sufficient to ensure a stable variance–covariance

matrix Ω̂sl. Since the bootstrapping can be done very efficiently on today’s computers, we used P

= 1,000,000. Finally, Ωs was estimated as Ω̂s =
∑

Ω̂sl/L, implying that each covariance matrix Ω̂sl

is equally likely to be present for each elicitation in the future. The sampling bias for quantile i was

estimated as δ̂s
i =

∑
l Δ̄il/L. The vector of these biases constituted δ̂s. For Dow’s data, the values of

Ω̂s and the bias vector δ̂s are shown in Table 1.

The estimated judgmental bias δ̂ was obtained as δ̂ = δ̂t− δ̂s using (15), and the estimated matrix

of judgmental errors Ω̂ was obtained as Ω̂ = Ω̂t − Ω̂s using (16), and are shown in Table 1.

6.5. Benefits of Incorporating Judgmental Errors at Dow

For the variance–covariance matrix Ω in Table 1 and the matrix Z =
[

1 −1.28
1 0
1 0.67

]

, Theorem 1 provides

the weights w∗
μ=[−0.18,1.51,−0.33] and w∗

σ=[−0.58,0.20,0.38] for the 10th, 50th, and 75th quan-

tiles. For these results, the following regime is useful for Dow: First, obtain the estimates of the 10th,

50th, and 75th quantiles x̂ from the expert. Obtain the de-biased estimates q̂ = x̂− δ̂ by subtracting

the biases δ̂1 = 10.48, δ̂2 = 0.94, δ̂3 = −3.03. Then, use the weights above on the de-biased estimates

to obtain the mean and standard deviation as μ̂ = w∗
μ

tq̂ and σ̂ = w∗
σ

tq̂.
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Using our approach for Ω in Table 1, the variance in the estimate μ̂ is V ar(μ̂) = 18 (bags/acre)2

approximately. This variance more than doubles V ar(μ̂I) = 38 (bags/acre)2 if we ignore the judg-

mental errors and use the weights for the error ignoring Benchmark I discussed in Section 4.4,

wI∗
μ =[0.22,0.36,0.42]. The variance of Benchmark II’s estimate is V ar(μ̂II) = 53 (bags/acre)2 assum-

ing elicitation of the 10th and 75th quantiles. Similar trends are present for the standard deviation.

This reduction in variance in the estimates μ̂, σ̂ for yield distributions has two measurable impacts.

First, at Dow the yield distributions have a variance of σ2 ≈ 400 on the average. Using Proposition 3,

it follows that when the expert’s judgmental errors are accounted for using our approach, his quantile

judgments can be used to extract information (for the distribution parameters) that is equivalent to

the information provided by σ2/V ar(μ̂) = 400/18≈ 22 data points. In contrast, Benchmarks I and II

ignore his judgmental errors and extract information that is equivalent to σ2/V ar(μ̂I) = 400/38≈ 11

and σ2/V ar(μ̂II) = 400/53 ≈ 7 data points, respectively. For Dow’s practice of test-growing a seed

in 3–4 test-fields every year, our approach extracts information (from quantile judgments) that is

equivalent to approximately 5–6 years of test-data while Benchmarks I and II extract information

that is equivalent to test-data of 2–3 years and 1–2 years, respectively.

Second, the reduction in variance of μ̂, σ̂ has monetary benefits. Akcay et al. (2011) show that

the average cost of operation for a firm that procures products under uncertain demand decreases

with the number of data points available for determining the distribution of uncertainty. Using data

from SmartOps Corporation, they establish that an increase in the availability of data points from

10 data points to 20 data points reduces the operating cost between 10% to 20% (Tables 2,3,4 on

page 307). In our context this finding implies a substantial benefit for Dow’s annual $800 million

decision from using our approach that is equivalent to 22 data points as opposed to Benchmark I

that is equivalent to 11 data points. Equally importantly, as the cost of implementing the proposed

approach is minimal, the decision to implement it at Dow was easy to make.

An additional advantage of the proposed approach is that it is now possible to investigate whether

the expert should be asked to provide judgments for specific quantiles. Dow’s expert provided us

with his judgments for the 10th quantile because he was accustomed to thinking about this quantile.
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Figure 5 Differences between the variance in μ̂ and σ̂ at different z values elicited.

If we had asked him to provide his judgments for a more extreme fractile, it is very likely that

the variance of the judgmental error for this specific quantile would have been larger. Given this

increase in error, which quantiles are worth asking for? Figure 5 illustrates this analysis. For the

current matrix Ω of judgmental errors, V ar(μ̂) is minimum at z ≈−1.0 (line with square markers in

left panel). In contrast, V ar(σ̂) in the right panel decreases as we elicit quantiles further out in the

tail of the distribution. Now suppose the variance of the judgmental error doubles when the expert

is asked to estimate a different quantile in lieu of the 10th quantile. The panel on the left shows

that regardless of which quantile the expert now provides (line with round markers), the estimated

mean will have a larger variance than before. But for the estimation of the standard deviation, the

right panel shows that increasing the variance in judgmental errors may still be worthwhile, but only

when the expert can provide estimates of the 5th quantile or lower (for z value of -2 or lower). Given

this analysis, there does not appear to be a significant benefit in asking the expert to estimate a

different quantile instead of the 10th quantile.

7. Summary and Concluding Remarks

In changing environments, historical data does not exist to provide probability distributions of vari-

ous uncertainties. In such environments, experts’ judgments are sought. But experts’ judgments are

prone to judgmental errors. In this paper we develop an analytical approach to deducing probability

distributions from a set of quantile judgments provided by an expert while explicitly taking the

expert’s judgmental errors into account.

From a theory development perspective, the two-step optimization approach developed, its analyt-

ical solution, and its use for developing a number of structural properties and providing an analytical
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foundation for results documented numerically in the decision analysis literature is a contribution

to this literature. A salient feature of the approach is that an expert is no longer required to provide

judgments for the median and specific symmetric quantiles studied in the literature but can provide

his judgments for any set of quantiles. We also develop a novel equivalence between an expert’s quan-

tile judgments and a sample size of randomly collected data; this equivalence is useful for ranking

and comparing experts objectively. Finally, the modeling framework explains a consistent numerical

finding in the decision analysis literature that the weights for the mean and the standard deviation

add up to 1 and 0, respectively.

Equally importantly, the approach establishes new connections between this problem and other

streams of literature. It provides for a linear pooling of quantile judgments from multiple experts,

thereby extending the existing literature on combining multiple point-estimates to combining quan-

tile judgments from multiple experts. The estimates obtained for distribution parameters in our

approach can also be updated using data in a Bayesian fashion with a Copula based procedure.

From a practice perspective, our approach has features that make it viable for implementation:

First, our approach uses judgments for any three or more quantiles that an expert is comfortable

providing. In a specific application at Dow AgroSciences, we used the yield-expert’s judgments for

the 50th, 10th, and 75th quantiles to deduce the mean and standard deviations of a large number

of yield uncertainties. The expert chose to estimate these quantile based on his experience with

seeing and using these quantiles in his data analysis responsibilities at the firm. Second, the final

outcome of the approach is a set of weights that are used to estimate mean and standard deviations

as weighted linear functions of quantile judgments. The implementation of this procedure requires

simple mathematical operations that can be performed in a spreadsheet environment, and it has led

to an expedited adoption at Dow. Third, the weights are specific to the expert and capture how good

he is at providing estimates of various quantiles. This explicit incorporation of an expert’s judgmental

errors is useful since we can then determine how the estimated probability distribution (and the

decision based on this estimated distribution) will vary as the quality of the expert’s judgmental

errors improve or deteriorate.
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Appendix

1. Proof of Lemma 1

We first prove an intermediate result in Lemma 3 below.

Lemma 3 (Characterization of location–scale Moments) Let X be a random variable with finite jth

moments for j = 1, 2, . . . , k, then the moments μk(θ) have the functional form:

μk(θ) = μk(θ1, θ2) =
k∑

i=0

(
k

i

)

θi
1θ

k−i
2 κk−i, (17)

where κi = μi(0,1) and κ0 = 1, if and only if X is a random variable with a distribution with a location–scale

family. Further, the central moments are obtained as μ̄k(θ) = E[(x−μ)k] = θk
2

∑k

i=0(−κ1)iκk−i.
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Clearly μ0(θ) = 1 for all random variables. To prove the “if” claim (⇐) denote as φx(∙; θ1, θ2) the pdf of X,

and define a random variable Z with pdf φ(z) = φx(x; 0,1). It then follows from the definition of distributions

with a location–scale family that (17) can be written as

μk(θ1, θ2) =
1
θ2

∫
(θ1 + θ2z)k dΦ(z) for k = 1, 2, . . . (18)

The claim follows by expanding (θ1 +θ2z)k and expressing the individual integrals as moments of Z. To estab-

lish the converse claim (⇒) we assume, contrary to fact, that X is not a random variable with a distribution

with a location–scale family and μ1(θ1, θ2) = θ1 +κ1θ2. It then follows that there is a transformation x = g(z)

with

μ1(θ1, θ2) =
∫

xφx(x; θ1, θ2)dx =
∫

g(z)φx(g(z); θ1, θ2)g
′(z)dz = θ1 + κ1θ2. (19)

Since the expectation is a linear operator and for any x = g(z) we have φx(x; θ1, θ2)dx = φx(g(z); θ1, θ2)g′(z)dz,

we must also have g(z) = θ1 + θ2z = x and φx(x; θ1, θ2) = (1/θ2)φ
(
(x− θ1)/θ2

)
. But this means that X has a

distribution with a location-scale family, which is a contradiction. Hence X must be a random variable with

a distribution with a location-scale family. The expressions in Lemma 1 are obtained by expanding (17) for

k=1,2.

To show that μ̄k(θ) = E[(x− μ)k] = θk
2

∑k

i=0(−κ1)iκk−i, we substitute x = θ1 + zθ2 and μ = θ1 + κ1θ2 and

obtain μ̄k(θ) = E[(x− μ)k] = E[(θ1 + zθ2 − θ1 − κ1θ2)k] = θk
2E[(z − κ1)k]. On binomial expansion of the last

term, and using E[zk−i] = κk−i, we obtain μ̄k(θ) = θk
2E[(z −κ1)k] = θk

2

∑k

i=0

(
k

i

)
(−κ1)iκk−i. �

2. Proof of Lemma 2

The result follows because Ω is a covariance matrix, hence it is positive definite and the objective function

(8) is convex.

3. Proof of Theorem 1

The Lagrangian of the problem is

L = wtΩw− [λ1, λ2][w
tZ− at] (20)

This can be written as

L = wtΩw−λ(wtZθ− atθ) (21)

when the constraint wtZθ = atθ must be valid for all vectors θt = (θ1, θ2) ∈ R ×R++. Then the first order

optimality conditions are given by the following n +1 equations:

∇wLt =2wtΩ−λθtZt = 0, (22)
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∂

∂λ
L =−wtZθ + atθ = 0. (23)

Post-multiplying the first equation by Ω−1Z, we obtain 2wtZ = λθtZtΩ−1Z. Since (23) must be satisfied by

all valid θ, we must have wtZ = at, and we can then solve for λθt as

λθt = 2at(ZtΩ−1Z)−1 (24)

The inverse of ZtΩ−1Z exists because Z has a full column rank. Substituting (24) in (22) and post-multiplying

by Ω−1 we obtain the optimal weights w∗.

4. Proof of Proposition 1

We showed above that

wtZ = at. (25)

For the estimation of mean μ, we have a = [1, κ1], which then implies that
∑

w∗
μi = 1. Similarly, for the

estimation of standard deviation a =
[
0,
√

κ2 −κ2
1

]
, which implies that

∑
w∗

σi = 0. �

5. Proof of Proposition 2

(i) After expanding the solution w∗t
a = at(Z

t
Ω−1Z)−1Z

t
Ω−1 and substituting z2 = 0, we obtain the following

expression of w∗
μ2

:

w∗
μ2

=
z2
3V ar(q̂1)+z2

1V ar(q̂3)−2z1z3ρ13

√
V ar(q̂1)V ar(q̂3)−

√
V ar(q̂2)(z1−z3)

(
z1ρ23

√
V ar(q̂3)−z3ρ12

√
V ar(q̂1)

)

V ar(q̂2)(z1−z3)2+z2
3V ar(q̂1)+z2

1V ar(q̂3)−2z1z3ρ13

√
V ar(q̂1)V ar(q̂3)−2

√
V ar(q̂2)(z1−z3)

(
z1ρ23

√
V ar(q̂3)−z3ρ12

√
V ar(q̂1)

)

which we can write as w∗
μ2

=
c1−

√
V ar(q̂2)(z1−z3)c2

c3V ar(q̂2)−2
√

V ar(q̂2)(z1−z3)c2+c1
where c1 = z2

3V ar(q̂1) + z2
1V ar(q̂3) −

2z1z3ρ13

√
V ar(q̂1)V ar(q̂3), c2 = z1ρ23

√
V ar(q̂3) − z3ρ12

√
V ar(q̂1), c3 = (z1 − z3)2. We can also factorize

the squares in the denominator and write it as V ar(q̂2)(z1 − z3)2 + V ar(z3q̂1 − z1q̂3) − 2
√

V ar(q̂2)(z1 −

z3)
(
z1ρ23

√
V ar(q̂3) − z3ρ12

√
V ar(q̂1)

)
. Since (z1 − z3) < 0, the denominator is strictly positive when

z1ρ23

√
V ar(q̂3) ≥ z3ρ12

√
V ar(q̂1)). We will denote the denominator as D. For ease of analysis, we will focus

on 1−w∗
μ2

. On simplification, the expression for this quantity is obtained as:

1−w∗
μ2

=

√
V ar(q̂2)(z1 − z3)

(√
V ar(q̂2)(z1 − z3)+ z3ρ12

√
V ar(q̂1)− z1ρ23

√
V ar(q̂3)

)

D
(26)

We can further complete the squares in the numerator and write it as N =
(√

V ar(q̂2)(z1 − z3)+ (c5/2)
)2

−

(c5/2)2 where c5 = z3ρ12

√
V ar(q̂1)− z1ρ23

√
V ar(q̂3). In the numerator expression of N , (z1 − z3) < 0. There-

fore, the numerator is greater than zero when c5 < 0. That is 1 − w∗
μ2

> 0, or w∗
μ2

< 1 when c5 < 0 or when

z3ρ12

√
V ar(q̂1) < z1ρ23

√
V ar(q̂3). It follows that when z3ρ12

√
V ar(q̂1) < z1ρ23

√
V ar(q̂3), the weight w∗

μ2
> 1

and w∗
μ2

< 1 otherwise. The limit of w∗
μ2

= 1 at
√

V ar(q̂2) = 0 is obtained by substituting this value in the

expression of w∗
μ2

.
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(ii) The analysis for the standard deviation follows similarly with the expression of the weight: w∗
σ2

=

z3V ar(q̂1)+z1V ar(q̂3)+(z1+z3)ρ13

√
V ar(q̂1)V ar(q̂3)−

√
V ar(q̂2)(z1−z3)

(
ρ23

√
V ar(q̂3)−ρ12

√
V ar(q̂1)

)

V ar(q̂2)(z1−z3)2+z2
3V ar(q̂1)+z2

1V ar(q̂3)−2z1z3ρ13

√
V ar(q̂1)V ar(q̂3)−2

√
V ar(q̂2)(z1−z3)

(
z1ρ23

√
V ar(q̂3)−z3ρ12

√
V ar(q̂1)

) . Or, we

can write it as w∗
σ2 =

c4−
√

V ar(q̂2)(z1−z3)c2

c3V ar(q̂2)−2
√

V ar(q̂2)(z1−z3)c2+c1
where c4 = z3V ar(q̂1) + z1V ar(q̂3) + (z1 +

z3)ρ13

√
V ar(q̂1)V ar(q̂3).

�

6. Proof of the Variance and Covariance of Estimates

We are interested in the variance of wa
tq̂ for a = μ, σ. Since wa

tq̂ = wa
t(Zθ + ε) = wa

tZθ + wa
tε and

the term wa
tZθ is a constant, it follows that the variance of wa

tq̂ is equal to the variance of wa
tε which is

given by wa
tΩwa for a = μ, σ. Replacing the expressions for wa obtained in Theorem 1 we obtain the variance

as

wa
tΩwa = a

t

(ZtΩ−1Z)−1ZtΩ−1ΩΩ−1Z(ZtΩ−1Z)−1a = a
t

(ZtΩ−1Z)−1a. (27)

Note that a = [1, κ1]
t for estimating μ, a=

[
0,
√

κ2 −κ2
1

]t
for estimating σ, a = [1,0]t for estimating θ1, and

a = [0,1]t for estimating θ2. The covariance Cov[θ̂1, θ̂2] is calculated as Cov[θ̂1, θ̂2] = E[θ̂1θ̂2]−E[θ̂1]E[θ̂2]. Now

θ̂1 = [1,0](ZtΩ−1Z)−1ZtΩ−1(Zθ + ε) and θ̂2 = [0,1](ZtΩ−1Z)−1ZtΩ−1(Zθ + ε). Therefore, the value of the

covariance Cov[θ̂1, θ̂2] is determined as

Cov[θ̂1, θ̂2] = E
[[

[1,0](ZtΩ−1Z)−1ZtΩ−1(Zθ + ε)
] [

[0,1](ZtΩ−1Z)−1ZtΩ−1(Zθ + ε)
]]

−E[θ̂1]E[θ̂2] (28)

On subsequent simplification and substitution E[ε] = 0 we obtain

Cov[θ̂1, θ̂2] = [1,0](ZtΩ−1Z)−1[0,1]t (29)

�

7. Proof of Proposition 3

(a) For the mean, we note that variance of the distribution of a sample mean of size Nμ is equal to σ2/Nμ where

σ2 is the population variation. Equating this variance with the variance [1 , κ1](ZtΩ−1Z)−1[1, κ1]
t obtained

above in (27), we obtain Nμ = σ2

[1,κ1](ZtΩ−1Z)−1[1,κ1]
t .

(b) Stuart and Ord (1994) show on p 352 that the variance of sample standard deviation can be approximated

as

V ar(S)≈
μ̄4 − μ̄2

2

4Nσσ2
(30)

where μ̄i denotes the ith central moment of the distribution of the random variable X. We know from Lemma

3 that

μ̄i = θi
2

i∑

j=0

(−κ1)
jκi−j (31)
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From Lemma 1, we know that θ2 = σ/
√

κ2 −κ2
1. Substituting this in (31), we obtain μ̄i =

σi
∑i

j=0(−κ1)jκi−j/
(√

κ2 −κ2
1

)i

Substituting this in (30), we obtain

V ar(S)≈
σ2

4Nσ






∑4
j=0(−κ1)jκ4−j

(κ2 −κ2
1)2

−

(∑2
j=0(−κ1)jκ2−j

)2

(κ2 −κ2
1)2




 (32)

Equating this with the variance in (27) [0,
√

κ2 −κ2
1](Z

tΩ−1Z)−1[0,
√

κ2 −κ2
1]

t
, we obtain

Nσ ≈
σ2




∑4

j=1(−κ1)jκ4−j

(κ2−κ2
1)2

−
(∑2

j=1(−κ1)jκ2−j)2

(κ2−κ2
1)2





4[0,
√

κ2−κ2
1](Z

tΩ−1Z)−1[0,
√

κ2−κ2
1]

t . �

8. Proof of Proposition 4

(a) We start by noting the general result in Theorem 1: w∗
a
t = at(Z

t
Ω−1Z)−1Z

t
Ω−1. Next, we define each

of these components when j=1,2,...,n experts provide quantile judgments. The matrix Zt = [Z0
t,Z0

t, ...,Z0
t]

where Z0
t appears n times, once for each expert. The subscript 0 simply suggests that this is a constant

matrix since all experts provide judgments for the same set of quantiles.. The matrix Ω is a mn×mn block

diagonal matrix with diagonal blocks rjΩ0 where Ω0 is of size m×m. Then,

1. (Z
t
Ω−1Z) = Z0

t

Ω−1
0 Z0[

∑N

j=1(1/rj)] = Z0

t

Ω−1
0 Z0R where R = [

∑N

j=1(1/rj)]

2. Z
t
Ω−1 = [Z0

t

Ω−1
0 (1/r1),Z0

t

Ω−1
0 (1/r2), ...,Z0

t

Ω−1
0 (1/rN)]

3. It follows from points 1 and 2 above that w∗
a
t = at(Z0

t

Ω−1
0 Z0)−1Z

t

0Ω
−1
0 [(1/r1)/R, (1/r2)/R, ..., (1/rN)/R].

Now we can write this expression as w∗
a
t = wc

a
t[(1/r1)/R, (1/r2)/R, ..., (1/rN)/R] where wc

a
t =

at(Z0

t

Ω−1
0 Z0)−1Z

t

0Ω
−1
0 . Further, the vector w∗

a
t is composed of the m weights for each expert j : w∗

a
t =

[w1
a

t
,w2

a

t
, ...,wn

a
t]. It follows from these two relations that wj

a = αjwc
a where the expert j ’s marginal weight

is equal to αj = (1/rj)/R.

(b) Consider the case when expert j is the only expert available with matrix Ω0 for eliciting quantiles Z0.

Then R = (1/rj). Substituting this expression in point 3 above, it follows that the weight for this expert is

equal to (1/rj)/R = 1, and the weights for his quantile judgments are equal to his independent weights.

�

9. Details on Bayesian Updating We performed the analysis for a distribution with true values of μ =

103, σ = 20, and assumed that the expert provided unbiased judgments q̂1 = 74, q̂2 = 105, q̂3 = 115 for the 10th,

50th, and the 75th quantiles. To generate the prior distributions for θ1, θ2, we used the estimated matrix

Ω =




78.99 29.38 33.33
29.38 21.92 30.30
33.33 30.30 68.17



. Since the expert provided quantile judgments for the 10th, 50th, and 75th quantiles,

the matrix Z was Z =

[
1 −1.28
1 0
1 0.67

]

. The mean, variance and the covariance between the distributions were

obtained using the expressions E[θ̂1] = [1,0](ZtΩ−1Z)−1ZtΩ−1q̂, E[θ̂2] = [0,1](ZtΩ−1Z)−1ZtΩ−1q̂, Var
[
θ̂1

]
=

[1,0](Z
t
Ω−1Z)−1[1,0]t, Var

[
θ̂2

]
= [0,1](Z

t
Ω−1Z)−1[0,1]t, and covariance Cov[θ̂1, θ̂2] = [1,0](Z

t
Ω−1Z)−1[0,1]t
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as provided in Section 6 of the Appendix. To determine the family of the distributions for the prior distributions

of θ̂1, θ̂2, we used the data generated during the error quantification process discussed in Section 2.1. For each

distribution in the bench marking process l=1,2,...,L with true values θ1l, θ2l we determined the unbiased

errors in the estimation of θ1, θ2 as e1l = θ1l−w∗
θ1

tq̂ and e2l = θ2l−w∗
θ2

tq̂. Then we determined the parametric

families that best fit these two streams of errors. We focused on the distributions with a positive domain and

found the Gamma distribution to be acceptable representations for the error streams for both parameters. We

selected a grid (and increased its resolution until the posterior distribution became stable) and then used the

Copula based simulation discussed in Section 4.3 to generate realizations of values θr
1, θ

r
2; r = 1,2, ...,100000,

and estimated the probability mass for the prior distribution.
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Figure 6 Bayesian updating of θ1, θ2 for Ω obtained at Dow and explained in Section 6, and 20 observations.

For updating the distributions for θ1, θ2 we followed the practice at Dow of mod-

eling Normally distributed yields, and considered the sample of 20 points with values

119.2,88.17,92.83,102.75,105.69,148.34,90.65,120.11,100.46,119.28,92.30,113.97,119.84,112.69,73.53,88.54,

115.61,111.77,71.52,100. These observations have a mean of 104.36 and the standard deviation of 18.14. The

updated distributions of θ̂1, θ̂2 are shown in Figure 6. For θ̂1, the mean of the prior distribution was 107.11



41

and the mean of the data was 104.36. The mean of the posterior distribution was 104.73 with a much smaller

spread as compared to the prior as evident in Panel 2 of the figure. For θ̂2, the mean of the prior distribution

was 21.76 and the mean of the data was 18.14. The mean of the posterior distribution was 18.90 with a much

smaller spread as compare to the prior as evident in Panel 4 of the figure.

10. Proof of Proposition 5

We need three intermediate results. Consider the matrix Ω = KΩ′ where K > 0 is a scalar, the diagonals

elements of Ω′ are equal to 1, and the off-diagonal elements are equal to the correlation value ρ. We can ignore

K for the analysis below. With this simplification, Ω = Ω ′.

(a) Ω−1 = 1
(1−ρ)σ2

(
I − ρM1

1+(m−1)ρ

)
. To establish this claim define M1 as an (m×m) matrix of ones and verify

that

ΩΩ−1 =
1

1− ρ

(

(1− ρ)I + ρM1

)(

I −
ρ

1+ (m− 1)ρ
M1

)

,

=
1

1− ρ

[

(1− ρ)I + ρM1 −
ρ(1− ρ)

1+ (m− 1)ρ
M1 −

ρ2m

1+ (m− 1)ρ
M1

]

= I.

(b)

ZtΩ−1 =
1

σ2(1+ (m− 1)ρ)

(
1 ∙ ∙ ∙ 1 ∙ ∙ ∙ 1

(1+(m−1)ρ)z1−S1ρ

1−ρ
∙ ∙ ∙ (1+(m−1)ρ)zi−S1ρ

1−ρ
∙ ∙ ∙ (1+(m−1)ρ)zm−S1ρ

1−ρ

)

.

To establish this claim we use (a) to obtain

Z
t

Ω−1 =
1

(1− ρ)σ2

(
1 ∙ ∙ ∙ 1 ∙ ∙ ∙ 1
z1 ∙ ∙ ∙ zi ∙ ∙ ∙ zm

)(
I −

ρ

1+ (m− 1)ρ
M1

)

=
1

σ2(1+ (m− 1)ρ)

(
1 ∙ ∙ ∙ 1

(1+(m−1)ρ)z1−S1ρ

1−ρ
∙ ∙ ∙ (1+(m−1)ρ)zm−S1ρ

1−ρ

)

.

(c) Denote S1 ≡
∑m

i=1 zi and S2 ≡
∑m

i=1 z2
i , then the inverse of (2× 2) matrix ZtΩ−1Z is obtained as

(ZtΩ−1Z)−1 =
σ2

mS2 −S2
1

(
S2(1+ (m− 1)ρ)−S2

1ρ −S1(1− ρ)
−S1(1− ρ) m(1− ρ)

)

.

Therefore, the weights for the mean are obtained as w∗
μi

= [1,0](ZtΩ−1Z)−1ZtΩ−1, which on simplification

reduce to wi = (S2−S1zi)

mS2−S2
1

. The weights for the standard deviation are obtained as w∗
σi

= [0,1](ZtΩ−1Z)−1ZtΩ−1,

which on simplification reduce to w∗
σi

= S1(S2−S1zi)

S2(mS2−S2
1)

− zi

S2
.

We now show that these weights coincide with the weights obtained for the minimization of the least squares

F =
∑

(θ1−ziθ2− q̂i)2. The summation is over indices i=1,2,...,m. Taking the first order derivatives, we obtain:

∂F

∂θ1

= 2
∑

(θ1 − ziθ2 − q̂i) = 0 (33)

∂F

∂θ2

= 2
∑

(θ1 − ziθ2 − q̂i)zi = 0 (34)

Now, we can write (33) as nθ1 − θ2

∑
zi −

∑
q̂i = 0, or, using

∑
zi = S1 equivalently,

θ1 =
θ2S1 +

∑
q̂i

n
(35)
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Next, we can simplify (34) as θ1

∑
zi − θ2

∑
z2

i −
∑

q̂izi = 0, or, using
∑

z2
i = S2 equivalently as,

θ2 =
θ1S1 −

∑
q̂izi

S2

(36)

Now, substituting (36) into (35), and simplification, we obtain

θ1 =

∑
q̂i(S2 −S1zi)
mS2 −S2

1

(37)

This relationship implies the weights of wi = (S2−S1zi)

mS2−S2
1

for the estimation of θ1. The weights for θ2 are obtained

similarly. �

11. Proof of Proposition 6

(i) The weights for benchmarks I and II both are obtained by a problem mis-specification of ignoring errors.

Therefore, the optimal (minimum) value of the objective function will always exceed the true optimal value.

(ii) We prove the result for the estimation of the mean. The result for the estimation of standard deviation

follows a similar proof. We first note from Proposition 3 that these sizes can be written as Nμ = σ2

V ar(μ̂)
,

N I
μ = σ2

V ar(μ̂I)
, and N II

μ = σ2

V ar(μ̂II)
. It follows from part (i) of this proposition that V ar(âI) ≥ V ar(â) and

V ar(âII)≥ V ar(â) for â∈ {μ̂, σ̂}. It follows that Nμ ≥N I
μ ,Nμ ≥N II

μ . �


